Timing Analysis by Automatic Boundingof Loop
نویسندگان
چکیده
Static timing analyzers, which are used to analyze real-time systems, need to know the minimum and maximum number of iterations associated with each loop in a real-time program so accurate timing predictions can be obtained. This paper describes three complementary methods to support timing analysis by bounding the number of loop iterations. First, an algorithm is presented that determines the minimum and maximum number of iterations of loops with multiple exits. Even when the number of iterations cannot be exactly determined, it is desirable to know the lower and upper iteration bounds. Second, when the number of iterations is dependent on unknown values of variables, the user is asked to provide bounds for these variables. These bounds are used to determine the minimum and maximum number of iterations. Specifying the values of variables is less error prone than specifying the number of loop iterations directly. Finally, a method is given to tightly predict the execution time of inner loops whose number of iterations is dependent on counter variables of outer level loops. This is accomplished by formulating the total number of iterations of a loop in terms of summations and solving the resulting equation. These three methods have been successfully integrated in an existing timing analyzer that predicts the performance for optimized code on a machine that exploits caching and pipelining. The result is tighter timing analysis predictions and less work for the user.
منابع مشابه
Error assessment in man-machine systems using the CREAM method and human-in-the-loop fault tree analysis
Background and Objectives: Despite contribution to catastrophic accidents, human errors have been generally ignored in the design of human-machine (HM) systems and the determination of the level of automation (LOA). This paper aims to develop a method to estimate the level of automation in the early stage of the design phase considering both human and machine performance. Methods: A quantita...
متن کاملAnalysis of Wind Speed Forecasting Error Effects on Automatic Generation Control Performance
The main goal of this paper is to study statistical indices and evaluate AGC indices in power system which has large penetration of the WTGs. Increasing penetration of wind turbine generations, needs to study more about impacts of it on power system frequency control. Frequency control is changed with unbalancing real-time system generation and load . Also wind turbine generations have more flu...
متن کاملSymbolic Analysis: A Basis for Parallelization, Optimization, and Scheduling of Programs
This paper presents an abstract interpretation framework for parallelizing compilers. Within this framework, symbolic analysis is used to solve various ow analysis problems in a uniied way. Symbolic analysis also serves as a basis for code generation optimizations and a tool for derivation of computation cost estimates. A loop scheduling strategy that utilizes symbolic timing information is als...
متن کاملConstrained Controller Design for Real-time Delay Recovery in Metro Systems
This study is concerned with the real-time delay recovery problem in metro loop lines. Metro is the backbone of public transportation system in large cities. A discrete event model for traffic system of metro loop lines is derived and presented. Two effective automatic controllers, linear quadratic regulator (LQR) and model predictive controller (MPC), are used to recover train delays. A newly-...
متن کاملHigh-Assurance Timing Analysis for a High-Assurance Real-Time OS
Worst-case execution time (WCET) analysis of real-time code needs to be performed on the executable binary code for soundness. Obtaining tight WCET bounds requires determination of loop bounds and elimination of infeasible paths. The binary code, however, lacks information necessary to determine these bounds. This information is usually provided through manual intervention, or preserved in the ...
متن کامل